Cartilage tissue engineering and damage mechanics using reactive mixture theory

VPHi's student committee webinar by Prof. Gerard Ateshian from Columbia University



Articular cartilage is the bearing material of diarthrodial joints. It supports contact stresses of up to 12 MPa while exhibiting a friction coefficient as low as 0.002. Cartilage degeneration is a hallmark of osteoarthritis, a debilitating degenerative joint disease that afflicts 30 million Americans. As there is no cure for osteoarthritis, significant focus has been placed on repair strategies such as tissue engineering. Though much progress has been made from empirical approaches in the field of cartilage tissue engineering, we believe that culture conditions that help reproduce functional properties in cartilage constructs may be optimized using suitable theories of growth mechanics based on reactive mixture theory. In this webinar, it will be discussed how advances in theoretical and computational growth mechanics have been applied to enhance nutrient supply to constructs and engineer constructs having the size of entire articular layers. It will also be presented intriguing results that growth of tissue constructs may be accompanied by damage of the freshly synthesized collagen matrix. Strategies for countering this damage will be addressed.


Gerard Ateshian performs research in the field of soft tissue mechanics, with an emphasis on cartilage mechanics, lubrication, and tissue engineering, and the formulation of growth theories for biological tissues. A major component of his research focuses on understanding and treating osteoarthritis.

Ateshian is particularly interested in formulating continuum mechanics theories that accommodate the complexities encountered in living biological tissues and cells, including mass transport, osmotic effects, and reactive mechanics in solid mixtures, needed to describe tissue growth and remodeling. Ateshian has used and extended the framework of mixture theory to explicitly account for mass exchanges among reactants and products, incorporating evolving mass content as state variables in functions of state, such as internal energy, entropy, stress, and mass supplies. His theoretical work also addresses the equivalence between classical passive and active membrane transport theories in biophysics and the framework of reactive mixtures.

Ateshian received all his degrees in mechanical engineering from Columbia University. He is a Fellow of the American Society of Mechanical Engineers, the Biomedical Engineering Society, and the American Institute of Medical and Biological Engineers.

Please have a look at webinar recordings HERE

You can download Prof. Ateshians's presentation HERE

For further information, don't hesitate to contact us!

- - - - - - - - - - - - - - - - - - - - - -

This webinar belongs to the VPHi keynote webinar series, a quarterly event organized by the VPHi Student Committee that provides a forum for access to senior community members and their expert competence for chiefly young scientists, but also to the VPH community as a whole.

With the series, VPHi wishes to:

Offer added value to prospective young scientist VPHi Student members through core content

Create visibility of VPH knowledge dissemination for external stakeholders

Highlight excellence within the VPHi, additionally providing student members with a label of quality

Promote scientific interaction between junior and senior community members and across VPHi disciplines



Tag: | Webinar: 31 of 43
All webinar


More news


More events

Subscribe to the VPH Institute Newsletter


Read all the newsletters of the VPH Institute