In the literature: November highlights

Click here to read some interesting recently published papers from our community. If you have published an article in the field of in silico medicine, send it to us: we will include it in this section of the newsletter!

PLoS Computational Biology: "Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar"

Suran Galappaththige et al

Abstract

Reliable and robust simulation of individual patients using patient-specific models (PSMs) is one of the next frontiers for modeling and simulation (M&S) in healthcare. PSMs, which form the basis of digital twins, can be employed as clinical tools to, for example, assess disease state, predict response to therapy, or optimize therapy. They may also be used to construct virtual cohorts of patients, for in silico evaluation of medical product safety and/or performance. Methods and frameworks have recently been proposed for evaluating the credibility of M&S in healthcare applications. However, such efforts have generally been motivated by models of medical devices or generic patient models; how best to evaluate the credibility of PSMs has largely been unexplored. The aim of this paper is to understand and demonstrate the credibility assessment process for PSMs using patient-specific cardiac electrophysiological (EP) modeling as an exemplar. We first review approaches used to generate cardiac PSMs and consider how verification, validation, and uncertainty quantification (VVUQ) apply to cardiac PSMs. Next, we execute two simulation studies using a publicly available virtual cohort of 24 patient-specific ventricular models, the first a multi-patient verification study, the second investigating the impact of uncertainty in personalized and non-personalized inputs in a virtual cohort. We then use the findings from our analyses to identify how important characteristics of PSMs can be considered when assessing credibility with the approach of the ASME V&V40 Standard, accounting for PSM concepts such as inter- and intra-user variability, multi-patient and “every-patient” error estimation, uncertainty quantification in personalized vs non-personalized inputs, clinical validation, and others. The results of this paper will be useful to developers of cardiac and other medical image based PSMs, when assessing PSM credibility.

Read full paper

---------------------------------------------------------

Nature Cardiovascular Research: "Fat infiltration in the infarcted heart as a paradigm for ventricular arrhythmias"

Eric Sung et al

Abstract

Infiltrating adipose tissue (inFAT) has been recently found to co-localize with scar in infarcted hearts and may contribute to ventricular arrhythmias (VAs), a life-threatening heart rhythm disorder. However, the contribution of inFAT to VA has not been well-established. We investigated the role of inFAT versus scar in VA through a combined prospective clinical and mechanistic computational study. Using personalized computational heart models and comparing the results from simulations of VA dynamics with measured electrophysiological abnormalities during the clinical procedure, we demonstrate that inFAT, rather than scar, is a primary driver of arrhythmogenic propensity and is frequently present in critical regions of the VA circuit. We determined that, within the VA circuitry, inFAT, as opposed to scar, is primarily responsible for conduction slowing in critical sites, mechanistically promoting VA. Our findings implicate inFAT as a dominant player in infarct-related VA, challenging existing paradigms and opening the door for unexplored anti-arrhythmic strategies.

Read full paper

---------------------------------------------------------

Computational and Structural Biotechnology Journal: "Computational modelling and simulation for immunotoxicity prediction induced by skin sensitisers."

Giulia Russo et al

Abstract

In many domains regulating chemicals and chemical products, there is a legal requirement to determine skin sensitivity to allergens. While many in vitro assays to detect contact hypersensitivity have been developed as alternatives to animal testing over the past ten years and significant progress has been made in this area, there is still a need for continued investment in the creation of techniques and strategies that will allow accurate identification of potential contact allergens and their potency in vitro. In silico models are promising tools in this regard. However, none of the state-of-the-art systems seems to function well enough to serve as a stand-alone hazard identification tool, especially in evaluating the possible allergenicity effects in humans. The Universal Immune System Simulator, a mechanistic computational platform that simulates the human immune system response to a specific insult, provides a means of predicting the immunotoxicity induced by skin sensitisers, enriching the collection of computational models for the assessment of skin sensitization. Here, we present a specific disease layer implementation of the Universal Immune System Simulator for the prediction of allergic contact dermatitis induced by specific skin sensitizers.

Read full paper



Date: 28/11/2022 | Tag: | News: 1383 of 1618
All news

News

More news

Events

More events
newsletter

Subscribe to the VPH Institute Newsletter

ARCHIVE

Read all the newsletters of the VPH Institute

GO