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1. Executive summary

The past decade has produced overwhelming evidence that changes in the health status of individuals, 
measured by well-defined quantitative clinical endpoints, can, in many specific cases, be predicted by computer 
models (also known as predictive models). This has opened the door to several applications for these computer 
modelling & simulation technologies, which are generically referred to as in silico medicine. There are different 
ways to build computer models, depending on the technologies as well as the quality and strength of data 
and knowledge that are used. When models are built using available scientific knowledge in biophysics, 
biochemistry, and physiology of the human body, both in healthy and diseased states, we refer to them as 
knowledge-driven models. When they are developed directly from data, without making any causal assumption 
such as is the case for artificial intelligence (AI) methods, we refer to them as data-driven models. 

AI methods are incredibly powerful, and intense research will make them even better. Although these 
technologies are very exciting, one should be careful of not over-promising as it could be detrimental to this 
emerging sector. Knowledge-driven models are neither intrinsically superior nor inherently inferior to data-driven 
models. What modelling approach is most viable and/or effective in a given situation depends on the question 
of interest, the context of use and the available data and knowledge. Often, different in silico technologies need 
to be combined to address very challenging scenarios in healthcare. After explaining the terminology used in 
the white paper and the different stakeholders involved, the white paper discusses the overlap and synergies 
between the different in silico medicine approaches (including AI). 

Several dimensions must be considered to determine the optimal modelling technology for a defined health 
scenario. A first dimension is the availability of reliable mechanistic knowledge of the phenomenon of interest. 
In the absence of such mechanistic knowledge, data-driven models are the clearly preferable. A second 
dimension is the effort, defined as the computational cost, meaning conducting the simulation within the 
time limit imposed by the context of use. The computer models providing a real-time answer require different 
technologies, computing facilities and deployment strategies than computer models used in the regulatory 
approval process or for planning medical interventions. A third dimension is linked to the requirements that 
each modelling strategy has in terms of quality and quantity of data required to build, run, and validate each 
predictive model. The availability of large high-quality data sets remains today an important challenge in 
healthcare. Additionally, the cost for acquisition, preparation, and management of data will become increasingly 
significant, particularly for data-driven models. A fourth and last dimension is related to the process we use 
to establish the credibility of a prediction obtained by such models. Both knowledge-driven and data-driven 
models must undergo complex scrutiny before they can be used in clinical or regulatory practice. However, the 
extent and the nature of such scrutiny is different for these two types of models as are the risks related to use 
outside the validation domain and concept drift.

The white paper describes how the greatest public health gain should be obtained by combining various 
approaches and gives several examples to illustrate the points made. Data-driven elements can be introduced  
in knowledge-driven models to complement, assess or accelerate the models and their computation by 
simulating parts of the modelled phenomenon for which insufficient mechanistic knowledge exists.  
When personalising knowledge-driven models with patient specific data, the knowledge-driven model needs 
to be inverted to find the appropriate parameter values and their uncertainties. In many cases, simple fitting 
techniques will not work properly, and developers will need to resort to advanced data-driven methods.  
Finally, to meet requirements on accuracy and speed of simulations, the knowledge-driven model can be 
replaced (completely or part of it), by a data-driven surrogate model. The combination of knowledge-driven and 
data-driven models allows the modelling as a whole to be computationally affordable while maximising  
the benefits of the knowledge-driven baseline.

In the other direction, mechanistic elements can substantially augment data-driven models. To develop data-
driven models with strong predictive power, large amounts of data (i.e. big data) are necessary. In many medical 
applications, however, the amount of clinical data available is by far not enough to sufficiently train a data-driven 
model. A valid knowledge-driven model can be used as a source of data to enhance the predictive power of data-
driven models, among others for rare events. Alternatively, the explicit inclusion of the knowledge-driven model 
as prior knowledge will help to reduce the size of the training data set required to train the data-driven models. 
Another way in which knowledge-driven models can be used to enhance data-driven models is to provide a 
benchmark against which the accuracy of the developed algorithms can be tested.
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Health policies can lead to the development of powerful in silico technologies (in the broadest meaning).  
The explicit inclusion of modelling in regulatory legislation such as the medical device regulation has given an 
impetus to the relevant stakeholders to consider modelling and simulation in their respective processes.  
The European Commission’s creation of the European Health Data Space and the proposed AI legislation will 
have an important impact on the further development of not only data-driven models but of in silico medicine as a 
whole. Reciprocally, in silico models, be they knowledge-driven, data-driven or hybrid, can drive health policies. 

To date, EU health policy has not put forward any formal regulatory frameworks for the various applications of 
in silico medicine and as such it remains a grey area when it comes to legislative guidance. It is crucial to strive 
for a policy framework that can enable (amongst others) in silico medicine in a manner that can raise safety 
standards in clinical trials, improve the lives of rare disease patients and reduce costs to device manufacturers 
and researchers. Stakeholders require legal certainty from regulators on what constitutes an acceptable model 
and as such need a framework which they can rely on to employ these techniques for safer and more effective 
healthcare delivery.

In line with this context, the members of the Avicenna Alliance from medtech, pharmaceutical, software and  
life science industries, as well as from the in silico medicine academic community and healthcare organisations 
call on the European Commission to: 

 •  Reflect the added value that in silico technologies have in healthcare within the revision of existing 
pharmaceutical legislation. This is particularly the case for the production of digital evidence for treatment 
development, especially for paediatric and rare diseases, which cannot be generated by the in vitro or ex vivo 
models, or is very challenging to generate using in vivo (animal and patient) models. 

 •  Introduce a clear regulatory framework for digital evidence for all medical products, including 
both drugs and devices, that takes into account the context of use and model risk to reduce political  
and economic barriers.

 •  Develop a Good Simulation Practice, similar to Good Clinical Practice or Good Manufacturing Practice, as a 
starting point for developing in silico models used in decision-making processes such as regulation. 

 •  Launch funding schemes promoting the adoption of in silico technologies in healthcare through pre-
commercial procurements, public procurements of innovations and early dialogues either with local/national 
health technology assessment agencies or through EU-level joint clinical assessments. 

 •  Promote public trust in in silico technologies by increasing awareness, e.g. increasing public literacy about 
said technologies. 
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2. Aims and scope
Currently, Artificial Intelligence (AI) and data are receiving significant attention in terms of policy activities and 
research funding at the European level and across the globe. At the same time, computer modelling and 
simulation are increasingly mentioned as a separate technology next to artificial intelligence1,2. However, there 
is no clarity as to differences and similarities of these technologies. The Avicenna Alliance (AA) is an association 
of industry, academia and healthcare organisations, the latter two represented through the Virtual Physiological 
Human institute (VPHi), that has a strong interest in the development and adoption of in silico technologies in 
all areas of healthcare. With this white paper, the authors aim to provide clarity on the overlap and synergies 
between the different in silico medicine approaches (including AI), as well as their respective place within the 
overarching continuum of in silico medicine and digital healthcare.

After an introduction into the different concepts, this paper presents a dedicated in silico strategy from the 
perspective of the users of the technologies. Subsequently, it discusses the in silico spectrum from knowledge-
driven to data-driven methodologies. Afterwards, an overview is provided of how these in silico technologies 
can be used, in which context, and at what point in time. It then explains how public health can benefit from 
the combination of different in silico approaches rather than from any a priori focus on a single technology, 
illustrated by several examples. Finally, a number of elements related to the assessment of credibility of the 
in silico evidence are discussed, in the context of health and medicine. The paper ends with a conclusion and 
recommendations to policy makers, regulators and payers in Europe and beyond.

“  This white paper provides clarity on the overlap 
and synergies between the different in silico 
medicine approaches, including AI.

1:  Amendments adopted by the European Parliament on 14 September 2021 on the proposal for a regulation of the European Parliament and 
of the Council amending Regulation (EC) No 851/2004 establishing a European Centre for disease prevention and control (COM(2020)0726 
— C9-0366/2020 — 2020/0320(COD)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021AP0376 .

2:  Horizon Europe work programme 2021-2022 for Health. https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/
horizon/wp-call/2021-2022/wp-4-health_horizon-2021-2022_en.pdf 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021AP0376
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/wp-call/2021-2022/wp-4-health_horizon-2021-2022_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/wp-call/2021-2022/wp-4-health_horizon-2021-2022_en.pdf
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3. Terminology
This section is not intended to provide an exhaustive lexicon on all terms related to in silico technologies, it 
merely serves to clarify the definition of a number of key concepts used throughout this paper that are not 
explicitly defined in the body of the paper. In several cases, the definition of a term can differ based on the 
community that is using it or the context in which it is used. In those cases, several definitions have been 
provided along with their source.

In silico3: in silico means carried out in the computer, which is in contrast to in vitro (on the bench), ex vivo (outside 
the living organism), or in vivo (inside the living organism),

 • In silico methods are experiments or analyses carried out in silico.

 •  In silico medicine encompasses the use of in silico technologies in all aspects of the prevention, diagnosis, 
follow-up, prognostic assessment, and treatment of diseases. These can be generic or individualized models.

 •  In silico trial means the use of individualized computer simulations in the development or regulatory 
evaluation of a medicinal product, medical device, or medical intervention. An in silico trial can apply  
to nonclinical or clinical studies. 

 •  In silico test/experiment/studies means the simulation of an in vitro, ex vivo or in vivo, but not clinical, 
experiment in the computational environment. 

 •  In silico evidence (sometimes also refer to as digital evidence) is the result from in silico methods applied  
in any activity involving a decision on quality (such as a regulatory process), and encompasses in silico trials 
and in silico tests.

Computational model, model, simulation:

 •  Computational modelling is the use of computers to simulate and study real-world systems using 
mathematics, physics and computer science4.

 •  Computer models are the algorithms and equations used on a computer to capture the behaviour  
of a physical system.

 •  A computer simulation is the result of running a computer program that contains equations or algorithms. 
Simulation, therefore, is the process of running a model.

 Digital Twin: definitions vary among the use of digital twins in engineering or healthcare contexts.

 •  In engineering, a digital twin is defined as a set of virtual information constructs that mimic the structure, 
context, and behaviour of an individual/unique physical asset, process or entity, is dynamically updated 
with data from its physical twin throughout the period where the twin is used to support decisions, and 
ultimately informs decisions that realize value.

 •  In healthcare the term is often used in the context of personalised medicine, as the direct use of individual-
specific models for the prevention, prediction, screening, diagnosis and treatment of a disease, as well as  
the evaluation, optimization, selection and personalisation of intervention options5. To acknowledge this is  
a relaxed version of the original definition of a digital twin, it will be called a digital patient, a virtual patient,  
a virtual twin, a digital avatar, a human digital twin or a digital twin for personalised medicine.

Knowledge-driven models (used as synonyms: mechanistic models, hypothesis-based models, physics-based 
models or white box models): in silico models that are based on prior knowledge on cause-and-effect relationships6,7.

Data-driven models (used as synonyms: phenomenological models, empirical models, black box models): 
in silico models that develop a predictor automatically for the data without making any causal assumptions are 

3:  Viceconti M. et al.. In silico Clinical Trials: how computer simulations will transform the biomedical industry. 2016,  
https://avicenna-alliance.com/files/user_upload/PDF/Avicenna_Roadmap.pdf

4: National Institute of Biomedical Imaging and Bioengineering (NIBIB), 2020

5: Consensus definition from the European Commission workshop on the human digital twin December 2020.

6:  Transtrum M.K. & Qiu P. (2016). Bridging Mechanistic and Phenomenological Models of Complex Biological Systems. PLoS Comput Biol. 
12(5):e1004915. doi: 10.1371/journal.pcbi.1004915. 

7:  Lema-Perez L. (2019). On parameter interpretability of phenomenological-based semiphysical models in biology. Inform. Med. Unlocked 15, 
100158. doi:ff10.1016/j.imu.2019.02.002f

https://avicenna-alliance.com/files/user_upload/PDF/Avicenna_Roadmap.pdf
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called data-driven models. In this context, models utilizing statistics, artificial intelligence, machine learning, and 
deep learning are considered data-driven models.

 Machine Learning (ML): ML is the scientific study of computer algorithms that are able to learn and adapt 
through experience. ML algorithms build a model based on training data, in order to make predictions or 
decisions without being explicitly programmed to do so8. There are three main categories of ML algorithms: 
supervised, unsupervised and reinforced. Within (and across) these categories, different ML models have been 
developed such as artificial neural networks (which also make up the backbone of the ML subgroup called deep 
learning9), evolutionary algorithms, etc.

 Artificial Intelligence (AI): There is a large variety in definitions of AI. We refer the reader to the 2021 Joint 
Research Centre (JRC) report8 providing a full taxonomy of AI. Here we cite several definitions currently used 
by the European Commission and other international organisations.. The common element is the ability to learn 
from data and adapt its behaviour accordingly. 

 •  European Union (EU) high-level expert group on AI10: AI refers to systems that display intelligent behaviour 
by analysing their environment and taking actions – with some degree of autonomy – to achieve specific 
goals. In the context of this paper, only the purely software-based AI systems are considered (and more 
specifically, the analytical AI that is focused on cognitive intelligence and decision-making as opposed to 
human-inspired or humanised AI). Hardware-based AI systems that are also included in this definition are 
beyond the scope of this paper.

 •  AI Act (European Commission (EC), 2021)11: AI system means software that is developed with one or 
more of the techniques and approaches mentioned hereafter and can, for a given set of human-defined 
objectives, generate outputs such as content, predictions, recommendations, or decisions influencing the 
environments they interact with. The aforementioned techniques and approaches are: 

a.  Machine learning approaches, including supervised, unsupervised and reinforcement learning, 
using a wide variety of methods including deep learning; 

b.  Logic- and knowledge-based approaches, including knowledge representation, inductive (logic) 
programming, knowledge bases, inference and deductive engines, (symbolic) reasoning and 
expert systems; 

c. Statistical approaches, Bayesian estimation, search and optimization methods.

 •  Organisation for Economic Cooperation and Development (OECD)12. An AI system is a machine-
based system that is capable of influencing the environment by producing an output (predictions, 
recommendations or decisions) for a given set of objectives. It uses machine and/or human-based data  
and inputs to:

a. Perceive real and/or virtual environments; 

b.  Abstract these perceptions into models through analysis in an automated manner (e.g., with 
machine learning), or manually; and 

c. Use model inference to formulate options for outcomes. 

AI systems are designed to operate with varying levels of autonomy.

 Context of Use (CoU): The context of use defines the specific role and scope of the computational model used 
to address the question of interest13. It should include a detailed statement of what will be modelled and how the 
outputs from the computational model will be used to answer or inform the question of interest. It is important 
to note that the CoU is distinct from the “indications for use” or “intended use” of a medical device, which are 
descriptions of how a device is intended to be used in clinical practice. 

8:  Samoili, S., et al., AI Watch. Defining Artificial Intelligence 2.0, EUR 30873 EN, Publications Office of the European Union, Luxembourg, 2021, 
ISBN 978-92-76-42648-6, doi:10.2760/019901, JRC126426.

9:  Ching, T., D. S. et al. (2018). “Opportunities and obstacles for deep learning in biology and medicine.” J R Soc Interface 15(141). doi: 10.1098/
rsif.2017.0387

10: https://digital-strategy.ec.europa.eu/en/library/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines

11:  European Commission, Communication 2021/0106 (COD): Proposal for a regulation of the european parliament and of the council laying 
down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts.

12:  OECD Framework for the Classification of AI systems, OECD Digital Economy Papers, No. 323, OECD Publishing, Paris,  
https://doi.org/10.1787/cb6d9eca-en.

13:  Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices 
V&V 40 – 2018. ASME, 2018. 60p. ISBN: 9780791872048.

https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/wp-call/2021-2022/wp-4-health_horizon-2021-2022_en.pdf
https://doi.org/10.1787/cb6d9eca-en
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 Model Credibility: Model credibility refers to the trust in the predictive capability of a computational model  
for the CoU12. Trust can be established through the collection of evidence from the credibility activities.  
The process of establishing trust includes performing verification, validation and uncertainty quantification 
(VVUQ) and then demonstrating the applicability of the verification & validation (V&V) evidence to support the 
use of the computational model for the CoU. This is described in detail in the ASME V&V40 standard12. 

 Verification (in the context of in silico technologies): Verification is the exercise to ensure that the mathematical 
model is implemented correctly and then accurately solved14. Verification is composed of two activities: code 
verification and calculation verification. It often encompasses comparison with a reference “source of truth ”, like 
an analytical solution or a convergence limit.

 Validation (in the context of computer modelling and simulation): Validation is the process of assessing the 
degree to which the computational model is an appropriate representation of the reality of interest13 in a specific 
CoU, assessed using reference data as comparator. Validation is generally demonstrated by comparing the 
computational model predictions with the results from the comparator(s), which might be in vitro, ex vivo or in 
vivo data. Therefore, appropriate validation activities require attention to both the computational model and the 
comparator(s). Differences exist in the exact validation strategies for knowledge-driven vs data-driven models. 
For instance, a dataset for evaluating of predictive capability of a finalized model would be called a ‘validation 
dataset’ in V&V 40 but is called a ‘testing dataset’ in ML.

 Uncertainty Quantification: Uncertainty Quantification (UQ) is the process used to determine how dispersion or 
lack of exact knowledge of inputs, parameters, processes as well as unaccounted for or random factors affect 
the output of a model or algorithm. Quantification of uncertainty is essential for the end users to determine the 
degree of confidence in decisions based on the output of models and algorithms. Therefore the Uncertainty 
Quantification is part of the Validation process12.

“  Knowledge-driven models are models that are 
based on prior knowledge on cause-and-effect 
relationships. [...] Data-driven models are models 
developed on data without making any causal 
assumptions. [...] These are the extremes of the 
in silico spectrum, with most models situated 
somewhere in between.

14: Standard for Verification and Validation in Computational Solid Mechanics V&V 10 – 2019. ASME, 2020. 44p. ISBN: 9780791873168.
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4. Introduction
Artificial Intelligence is omnipresent in policy and regulation nowadays. At the same time, there is an increasing 
awareness that other digital technologies can play an important role in healthcare. The last ten years produced 
overwhelming evidence that, despite their complexity, changes in the health status of individuals as measured 
by well-defined quantitative clinical endpoints can, in many specific instances, be reproduced and predicted by 
computer models. This has opened the door to a number of relevant applications for these computer modelling & 
simulation technologies in healthcare, which are generically referred to as in silico medicine. 

In silico models are used in software for medical purposes (e.g., decision support systems) as well as in the 
development and testing of medicinal products and medical devices. The European Parliament Research 
Service’s recent publication via the Scientific Foresight Unit (STOA)15 recognises that in silico testing, along with 
in vitro testing, has great potential in lowering cost of drug discovery; the same study also speaks of in silico 
validation in discrete testing of AI algorithms. Various relevant definitions have been provided in the Terminology 
section. The exact nature of the computer modelling and simulation depends on the users of the technologies  
or the evidence they generate.

  Health Technology Assessment (HTA) agencies and payers:

HTA is an evidence-based process that allows competent authorities to determine the relative effectiveness 
of new or existing technologies (medicinal products and medical devices). It focuses specifically on the added 
value of a health technology in comparison with other new or existing health technologies. Such added value 
could be assessed using computer modelling and simulation, balancing benefits and harms of the new health 
technologies in different scenarios or for different patients’ profiles, as well as balancing benefits and resources 
required to achieve them and relevant sources of uncertainty in decision making16. Through HTA, national health 
authorities and payers can take informed decisions on pricing or reimbursement.

 Regulatory agencies: 

Use of in silico evidence generated by models that can be included in regulatory dossiers to demonstrate patient 
safety and efficacy/performance. Various agencies have specific guidances for the use of computer modelling 
and simulation in the development of medicinal products from design over first-in-human dosing justification to 
late-stage confirmatory trial population selection eligibility criteria formulation (e.g., EMA: Model Drug Discovery 
Development; USA-FDA Model Informed Drug Development).

 Healthcare professionals: 
Digital Patient solutions (also known as Digital Twins or Digital Avatars) provide valuable support to the medical 
decision on individual patients, whether related to diagnosis, prognosis or treatment planning, and they enable 
personalised medicine17. 

 Patient:

Personal Health Forecasting solutions supplement the digital health revolution with the vital element of 
forecasting, as a guide for self-management of chronic patients and people at risk of developing diseases15.

 R&D (Academia, Industry): 

In silico Trials use Digital Patients in the place of or in addition to real patients in the testing of safety or efficacy of 
new medical products (e.g., medicinal product, devices). Their use for healthcare products brings the analogue to 
virtual testing that is now common practice in other industrial sectors. Without the same limitations as a physical 
trial, they enable testing of new medical products on a relevant virtual patient population.

15: Artificial intelligence in healthcare: Applications, risks, and ethical and societal impacts, Study, 01-06-2022. ISBN: 978-92-846-9456-3

16:  Dahabreh IJ, et al., Modeling and Simulation in the Context of Health Technology Assessment: Review of Existing Guidance, Future 
Research Needs, and Validity Assessment [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2017 Jan. Report No.: 
16(17)-EHC020-EF. PMID: 28182366.

17:  Díaz V., et al., Discipulus Roadmap for the Digital Patient, 2013  
https://www.vph-institute.org/upload/discipulus-digital-patient-research-roadmap_5270f44c03856.pdf

https://www.vph-institute.org/upload/discipulus-digital-patient-research-roadmap_5270f44c03856.pdf
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5. The in silico continuum
To build knowledge in science, we observe natural phenomena and formulate a large number of alternative 
hypotheses that can explain those observations in terms of cause-effect relationship. Through controlled 
experiments, we can disprove the vast majority of these hypotheses; however, a few resist any attempt to 
disprove them, and are thus accepted by the scientific community as tentatively true, and become part of the 
scientific knowledge (e.g., like the Newton’s laws of Dynamics). Hereinafter we will refer to predictive models 
that are based on such cause-effect relationships with the term knowledge-driven models, because they are 
built on the knowledge of the causal mechanism of the process being modelled. The predictive in silico models 
that are described and tested in the growing scientific literature or that have already reached the market and 
are in widespread use, are largely based on the available scientific knowledge on biophysics, biochemistry and 
physiology of the human body both in healthy and diseased states. 

Nevertheless, this is not the only way to build predictive models. When a sufficiently large body of empirical 
observations are available, we can try to develop a predictor without making any causal hypothesis. This can 
be done in a variety of ways: using statistics, system identification methods, machine learning, etc. Hereinafter 
we will refer to these other predictive models with the term data-driven models because they are derived 
exclusively by the observation of the phenomenon to be modelled.

It can be convenient to describe complex knowledge spaces with well-defined taxonomies, like the separation 
between knowledge-driven and data-driven models we use in this paper. But it is important to keep in mind the 
limitations of such convenient separation. The most important is that purely knowledge-driven models rarely 
exist; real-world knowledge-driven models always include some data-driven elements. For example, if a model 
describes the laws of physics for a biological system on a finite portion of space-time, the boundary conditions 
that describe the effects of the rest of the universe (not explicitly incorporated in the model) on that portion of 
space-time must necessarily be described with data-driven elements. In addition, when a knowledge-driven 
model describes events taking place at the level of a tissue or organ, it makes abstraction of the components 
at the cellular scale and events happening at this cellular scale with impact on the tissue/organ scale are 
described using data-driven descriptions.

In general, we can say that a predictive model of a biological system is always built in a data-driven way from 
empirical observations of said biological system, with variable amounts of prior mechanistic knowledge. We call 
data-driven models those that contain no mechanistic knowledge, and knowledge-driven models those that are 
largely made of mechanistic knowledge. However, these are the extremes of the in silico spectrum, with most 
models situated somewhere in between these extremes as depicted in Figure 1. 

Lately, the boundaries between these disciplines are blurring with explainable AI18, mechanistic ML19 or ML-
based surrogates of knowledge-driven models emerging as techniques that combine the best of both worlds - 
auditable and rationalizable causality with large flexibility and capability to be trained for a large number of 
applications and outputs.  

18:  Barredo Arrieta A, et al., Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. 
Information Fusion, 2020 ; 58(C) :82–115202. https://doi.org/10.1016/j.inffus.2019.12.012.

19:  Hurault G, et al., Personalized prediction of daily eczema severity scores using a mechanistic machine learning model. Clin Exp Allergy. 
2020 Nov;50(11):1258-1266. doi: 10.1111/cea.13717.

More phenomenological

Black Box
Data-driven, no prior knowledge
AI, Machine Learning

White Box
Knowledge-driven

Physics-based, First Principles

More mechanistic

Figure 1: The in silico spectrum including the most commonly used synonyms for the extremes of the spectrum.

https://doi.org/10.1016/j.inffus.2019.12.012
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6. Predictive models in healthcare: what to use and when?
AI methods are amazingly powerful, and there is intense research focusing on making them even better. But, like 
many other innovative approaches that have appeared in recent years, there is also a tremendous hype for the 
possibilities that these methods can offer in healthcare, mostly driven by the desire to minimize development 
times and arrive first at the forefront. One should be careful of not over-promising as it could be detrimental to this 
emerging sector. 

This paper wants to explain the importance of AI methods within in silico medicine, and to recognise the 
strengths and limitations of knowledge-driven and data-driven models in order to guide their rational and 
conscious adoption. We also want to highlight the huge potential of the combination of these approaches in 
addressing very challenging scenarios in healthcare.

Let us start by making a general statement: knowledge-driven models are not inherently superior or inherently 
inferior to data-driven models. What modelling approach is most viable and/or effective in a given situation 
depends on the question of interest, the CoU and the available data and knowledge. 

A first important dimension to decide what modelling technology to use, is the availability of reliable 
knowledge on the phenomenon of interest and if it is sufficient to formalize a mathematical description. If there 
is very little, if any, reliable causal knowledge around the biological process we want to model, data-driven 
models are clearly preferable.

A second dimension of the problem is the effort, defined as the computational cost, meaning the cost to obtain 
the prediction in the time limit imposed by the CoU. A predictive model used to support a medical decision in an 
emergency room must provide an answer in minutes, or else that prediction is useless; a prediction to be used 
to plan next week’s surgery can be provided in days without any problem. The computer models providing a 
real-time answer require different technologies, computing facilities and deployment strategies than computer 
models used in the regulatory approval process or for planning medical interventions. In most cases, we can say 
that while data-driven models have a very high computational cost when they are being built, they usually have 
a very small computational cost when they execute. Knowledge-driven models are generally the opposite: their 
construction does usually involve moderate computational costs but their execution may require medium to high 
computational costs, especially when the models include detailed mechanistic or personalized descriptions. 
Surrogate modelling, i.e. training fast-running models on output data obtained from extensive knowledge-based 
model simulations, allows to investigate at low cost the outcomes of such knowledge-driven models, making it 
suitable for use as medical decision support in an emergency room.

A third dimension is related to the data requirements in terms of quality and quantity of data required to build, 
validate, and run each predictive model. Observational data are required to develop a predictive model while 
other data are required to quantify its predictive accuracy (validation). In the case of ML models, yet another data 
set is required to test the model after validation of its parameters. However, in order to be specific, either to a 
single patient, or to small sub-groups of patients with common characteristics, predictive models need also to 
be fed at run-time with patient-specific data. These data sets (to build, validate and test/run a model) are usually 
different, both in nature and requirements, for different modelling technologies. Sometimes we have appropriate 
data to build, validate or run knowledge-driven models but not data-driven ones, or vice versa. One of the 
biggest challenges in the development and use of in silico models in healthcare is the availability of and access 
to data. The absence of an abundance of clean and consistent data is a challenge setting it aside from the other 
applications where in silico models are used in industry and society. Healthcare data is not free, both in terms of the 
cost associated with the acquisition of it and in terms of access due to privacy restrictions that apply (e.g., General 
Data Protection Regulation (GDPR) restrictions related to patient consent in EU). Additionally, the clean-up of 
the data to collect, store, get it into a usable format and manage, it comes with a non-negligible cost. Although 
data requirements are not the same for knowledge-driven and data-driven models, both require the presence 
of reliable data to establish the model and assess its credibility. For knowledge-driven models, the quality of the 
mechanisms/knowledge used to build the model is also dependent on the quality of the data this knowledge 
was derived from.

1
2

3
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A fourth dimension is related to the process we use to establish the credibility of a prediction obtained by such 
models. Both knowledge-driven and data-driven models need to undergo complex scrutiny before they can be 
used in the clinical or regulatory practice, but the extent and the nature of such scrutiny is different for the two 
types. Two topics are important to mention in this context: predictions outside of the validation domain and concept 
drift. The former refers to the use of a model for situations that fall outside of the domain for which the model has 
been validated (e.g., application of models validated for adult cases to paediatric cases). The latter indicates that 
the relationship between input and output variables can change over time in unforeseen ways (e.g., due to disease 
progression or intervention variability) potentially causing the model to become less and less effective over time 
(i.e. running the simulations for longer than the duration for which validation data was available). 

These are risks that could be said to exist for both data-driven and knowledge-driven models. However, 
knowledge-driven models are built on causational knowledge that generally reflects robust foundational 
mechanisms and tend to be relatively invariant when operating outside of the validation domain or when 
disease progresses, therefore we can, with relative confidence, confirm the credibility of knowledge-driven 
models “once for all” in the validation phase providing there is sufficient rigor in the verification and validation 
activities, outcomes and use. Data-driven models, on the other hand, are more susceptible to these recognized 
risks and in some cases such extrapolation might not even be possible. These models are often wholly 
correlational and founded on how “representative” data features and data observations used to construct the 
model are relative to current and future patterns of data variation in the intended use application. For data-driven 
models, mitigating the risk of predicting beyond the domain of validation is a question of clearly defining that 
validation space when aligning on the CoU at the very beginning, applying appropriate rigor in feature selection 
and representative data collection (pre-validation), and sufficiently communicating that CoU and the limitations 
on prediction applicability throughout the model lifecycle to all stakeholders (post-validation). 

To mitigate the risk of concept drift with data driven models, similar to what was mentioned for the validation 
domain, this involves a conversation on post-validation topics such as meaningful performance monitoring and 
robust change control mechanisms. Performance monitoring of the model is relatively self-explanatory and 
needs the engagement of both provider and user. Change control is a conversation on either “locking” models 
and changing them at some frequency, or as a result of some performance trigger, or allowing the models 
to continuously adapt to new unseen data. The change control approach chosen should at least be informed 
by benefit-risk and the ease of model adaptation. Care has to be taken with both scenarios. Locked models 
can experience concept drift relatively quickly if the change frequency is too long and models that adapt 
continuously are open to rare event data. Given the inherent risks with correlational analytics, developers of 
data-driven models should always be open to challenging ground truth beliefs and the potential for new data 
that challenges the interpolation or extrapolation capability of the model. Along with those post-validation 
controls, data collection and data analysis should also be recognized as lifecycle activities with such models.

“  What modelling approach is most viable and/
or effective in a given situation depends on the 
question of interest, the context of use as well  
as the available data and knowledge.

4
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7. Combining knowledge-driven and data-driven approaches
Most of the predictive models that are developed in healthcare are not situated at the extremes of the in silico 
spectrum, they rather are a combination of knowledge-driven and data-driven elements. In fact, when used in 
concert both approaches can strengthen each other, to the extent that they can push in silico medicine applications 
towards true clinical practice. Below details are provided on the different ways knowledge-driven and data-driven 
approaches can be combined. Three tangible examples are summarized in pages 16 to 18 to help illustrate the 
various points made.

There are multiple ways in which data-driven elements can be introduced in knowledge-driven models, 
other than through boundary conditions mentioned above. For instance, every knowledge-driven model is 
equipped with parameters (e.g., mechanical properties of a tissue that is modelled), but these parameters 
are typically quite variable between individuals. When personalising knowledge-driven models with patient 
specific data, we need to find the appropriate parameter values and their uncertainties. In many cases, simple 
fitting techniques will not work properly due to the limited amount of data available, and we need to resort to 
advanced data-driven methods (such as evolutionary algorithms or Bayesian inference). A good example of 
this is the personalisation of models describing drug absorption, distribution, metabolism and excretion (so-
called physiology-based pharmacokinetic models) using clinical data20. Data-driven modelling can also be used 
to efficiently explore the variability and error propagation due to parameter uncertainties in knowledge-driven models, 
especially when those are applied to biological materials and processes. For instance, when modelling a stent, the 
model of the stent itself has less uncertainties than the model of the aortic wall the stent is in contact with.  
Surrogate modelling techniques are typically used to explore the most relevant variations of model prediction 
and target the most critical data-driven parameters that can be used as primary calibration or design variables, 
or point out the need for specific experimental measurements. Finally, data-driven modelling can be used to 
identify specific subgroups in clinical data, after which knowledge-driven models can be used to identify the root 
cause mechanisms in each of the different subgroups (example 1, p. 17).

In knowledge-driven models there is always a trade-off between the accuracy of the prediction and the required 
computational time. Generally, an increase in accuracy will lead to an increase in computational time. If, however, 
the predication needs to be delivered in a pre-set time, which in acute situations or during a surgery can be 
quite short, it might be that a knowledge-driven model cannot deliver an accurate enough prediction. One 
tried and tested solution is to replace the knowledge-driven model, or part of it, by a surrogate model. The basic 
principle of surrogate models is that these are data-driven models that are trained using data obtained from 
simulations executed with the knowledge-driven model (see example 2, p. 18). By doing this, the surrogate model 
can be trained ‘off-line’, and then applied in the pre-set time scenarios. Many knowledge-driven models combine 
sub-models for different parts of the physiology (e.g., one sub-model for blood flow, another for tissue growth or 
thrombus formation21). Typically, in such combined models, a major part of the computing time is taken up by one  
or two of the sub-models. Replacing these sub-models by surrogates results in hybrid solutions, mixing knowledge-
driven and data-driven models, that would render the whole affordable computationally while still maximally 
benefiting from the advantages of the knowledge-driven baseline.

In the other direction, knowledge-driven elements can substantially augment data-driven models.  
To develop data-driven models with strong predictive power, one needs sufficient high-quality data. In many 
medical applications, however, the amount of available high-quality clinical data is not enough to sufficiently  
train a data-driven model and does not allow for new machine learning techniques to augment the data set.  
For example, in the case of image analysis applications, training can be performed predominantly on patients  
with a disease because these are the most common scans to be performed. The result can be that the data-
driven model always classifies images as diseased even if an image is taken from a healthy person. Alternatively, 
a classifier may not work on edge cases, this could be images from children, very large or very small people, 
or people with congenital diseases, co-morbidities, surgeries, tumours, or implanted devices. The myriad of 
possibilities poses very real limits on developing general clinical data-driven applications in cases where vast 
general databases are not available. Knowledge-based model simulations can be used very effectively to provide 

20:  Tsamandouras N, et al., Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to 
observed clinical data. Br J Clin Pharmacol. 2015;79(1):48-55. doi: 10.1111/bcp.12234.

21:  Nikishova A, et al., Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis. 
Philos Trans A Math Phys Eng Sci. 2019;377(2142):20180154. doi: 10.1098/rsta.2018.0154.
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richer data sets of edge cases, to understand how a data-driven application will react in different scenarios and 
to provide better initialisation and testing for data-driven applications22. A valid knowledge-driven model can be 
used as source of data that can be used to train, test and enhance the predictive power of data-driven models23,24. 
Alternatively, explicitly including the knowledge-driven model as prior knowledge will help in reducing the training 
set required to train the data-driven models. Several data-driven methods have a way of explicitly accounting 
for causal prior knowledge in the derivation of the predictive model such as Physics Informed Neural Nets25. 
This significantly reduces the amount of data needed to train the data-driven model and improves its predictive 
capability. Additional work is required as these methods are currently computationally quite slow, however this 
is a field in rapid evolution with fast progress. Finally, transfer learning can be used, where a data-driven model is 
initialised by first training against data generated from a knowledge-driven model and is then re-trained against a 
reduced but tractable real data set to tune the model26. These approaches of combining knowledge-driven virtual 
physiological human models with data-driven models have now been adopted in clinical applications, with data-
driven models being trained on virtual patient cohorts27,28,29,30 (example 3, p. 19).

Another way knowledge-driven models (or the in data they generate) can be used to enhance data-driven 
models is by providing a benchmark against which the numerical accuracy of the developed algorithm itself can 
be tested for model verification (not validation) purposes. Such benchmarks are already relatively common 
in knowledge-driven modelling, when the level of model complexity requires the verification of off-the-shelf 
dedicated solvers, e.g., in computational coupling of electro-mechanics phenomena in physiology31.  
Similar verification processes can be applied for the verification of the capacity of data-driven models to duly 
learn expected basic relationships between different inputs and outputs spaces.

22:  Kalra N and Paddock SM, Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? 
RAND Corporation, 2016. https://www.rand.org/pubs/research_reports/RR1478.html.

23:  Savva M, et al. Habitat: A Platform for Embodied AI Research; Proceedings of the IEEE/CVF International Conference on Computer Vision 
(ICCV), 2019, 9339-9347.

24:  Kolve E, et al. A. Ai2-thor: An interactive 3d environment for visual ai. arXiv 2019, 1712.05474v3 https://doi.org/10.48550/arXiv.1712.05474.

25:  Karpatne A, et al.. Physics-guided neural networks (pgnn): An application in lake temperature modeling arXiv 2021, 1710.11431v3.  
https://doi.org/10.48550/arXiv.1710.11431.

26:  Zappone A., et al. Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both? IEEE Transactions on 
Communications, 2019;67(10):7331-7376. doi: 10.1109/TCOMM.2019.2924010.

27:  Giffard-Roisin S, et al., Transfer Learning From Simulations on a Reference Anatomy for ECGI in Personalized Cardiac Resynchronization 
Therapy. IEEE Trans Biomed Eng. 2019;66(2):343-353. doi: 10.1109/TBME.2018.2839713.

28:  Alawad M, Wang L. Learning Domain Shift in Simulated and Clinical Data: Localizing the Origin of Ventricular Activation From 12-Lead 
Electrocardiograms. IEEE Trans Med Imaging. 2019;38(5):1172-1184. doi: 10.1109/TMI.2018.2880092.

29:  Niederer SA, et al., Creation and application of virtual patient cohorts of heart models. Philos Trans A Math Phys Eng Sci. 
2020;378(2173):20190558. doi: 10.1098/rsta.2019.0558.

30:  Roney CH, et al.,. Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial 
Models. Circ Arrhythm Electrophysiol. 2022;15(2):e010253. doi: 10.1161/CIRCEP.121.010253..

31:  Lluch È, et al., Breaking the state of the heart: meshless model for cardiac mechanics. Biomech Model Mechanobiol. 2019;18(6):1549-1561. 
doi: 10.1007/s10237-019-01175-9.

https://www.rand.org/pubs/research_reports/RR1478.html
https://doi.org/10.48550/arXiv.1712.05474
https://doi.org/10.48550/arXiv.1710.11431
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8.  Credibility assessment of knowledge-driven  
and data-driven models in health care 

Several guidance documents and/or standards outline a procedure for assessing credibility of knowledge-
driven models, defined in the context of medical devices and medicinal products12,32,33. After identification of the 
question of interest, describing the problem the model shall address, the CoU is defined, describing the role and 
scope of the model and how it is going to be used in relation to other forms of evidence. Then, the model risk is 
assessed for the specific CoU, taking into account the influence of the model on the medical decision as well as 
the consequence to the patient of an incorrect decision. These elements combined allow to set credibility goals 
for the model which will be obtained through verification, validation and applicability analysis. 

This strategy for credibility assessment follows a “fit-for-purpose” approach (all models are wrong, but some are 
useful). It acknowledges that no model will be a perfect picture of reality but - still - it may serve for a certain 
CoU and associated risk given that it fulfils a certain set of quality criteria. This means that, even though the same 
model might be applicable, it must not be used in a different context (and associated risk) where the credibility 
would require more stringent quality criteria, without re-iterating the credibility. 

For closed data-driven models (models that do not change after they have been released for use), the credibility 
assessment can in many ways (though not entirely) be similar to that of the knowledge-driven models mentioned 
above. Several AI models have already obtained permission from the FDA for use in clinics34. 

However, self-learning models do pose a substantial credibility assessment challenge as every new data set that 
is entered has the potential to change the entire AI model, which means it would require a complete re-validation. 
How to address this challenge is the subject of current regulatory discussion35 with FDA considering a lifecycle-
based regulatory framework for these technologies that would allow for modifications to be made from real-
world learning and adaptation, while still ensuring maintenance of the safety and effectiveness of the software as 
a medical device.

One additional element to mention here is the explainability of AI, referring to the ability to understand how the 
algorithm reached a certain solution. Explainability is explicitly requested by the EU-GDPR36 (article 15 mentions 
the right of explainability and article 22 the right of human intervention). Many of the more modern AI algorithms, 
such as deep learning, are naturally opaque (i.e. not explainable) but additional methods are being developed to 
address this issue37. Knowledge-driven models are explainable by their very nature.

32:  Kuemmel C, et al. Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to 
Physiologically-Based Pharmacokinetic Modeling and Simulation. CPT Pharmacometrics Syst Pharmacol. 2020 Jan;9(1):21-28. doi: 10.1002/
psp4.12479.

33:  Musuamba FT, et al., Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building 
model credibility. CPT Pharmacometrics Syst Pharmacol. 2021 Aug;10(8):804-825. doi: 10.1002/psp4.12669.

34:  https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-
medical-devices?utm_source=FDALinkedin#resources

35: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device

36: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN

37:  Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet 
Digit Health. 2021;3(11):e745-e750. doi: 10.1016/S2589-7500(21)00208-9. PMID: 34711379.

“  No model will be a perfect picture of reality  
but - still - it may serve for a certain context  
of use and associated risk given that it fulfils  
a certain set of quality criteria.

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_source=FDALinkedin#resources
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_source=FDALinkedin#resources
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN
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9. Conclusion and policy asks
Health policies can lead to facilitating the development of powerful in silico technologies (in the widest 
meaning as discussed above). The explicit inclusion of modelling in regulatory legislation (Medical Device 
Regulation (MDR) and In Vitro Diagnostics Regulation (IVDR)) has given an impetus to the relevant stakeholders 
to consider modelling and simulation in their respective processes. The European Commission’s creation of the 
European Health Data Space38 and the proposed AI legislation39 will have an important impact on the further 
development of not only data-driven models but of in silico medicine as a whole. Reciprocally, in silico models, 
be they knowledge-driven, data-driven or hybrid, can drive health policies. Given the European Commission’s 
Pharmaceutical Strategy340 (including the revision of the orphan and paediatric regulations), in silico models can 
have a major impact on the risk assessment and overall safety of medicinal treatments and contribute to making 
more affordable new drugs (and vaccines) available by reducing their development time and cost.

To date, EU health policy does not put forward any formal regulatory frameworks for the various applications of 
in silico medicine, and as such it remains a grey area when it comes to legislative guidance. In order to ensure the 
systematic use of in silico medicine, it is crucial to strive for a policy framework that can (among others) enable 
in silico medicine in a manner that can raise safety standards in clinical trials, improve the lives of rare disease 
patients and reduce costs to device manufacturers and researchers. Stakeholders require legal certainty from 
regulators on what constitutes an acceptable model and as such need a framework which they can rely on to 
employ these techniques for safer and more effective healthcare delivery. This framework should follow existing 
EU precedents which give room to manufacturers to perform conformity assessment by showing compliance 
with EU legislation through harmonised standards, or by other means of their own choice (e.g., by means of any 
existing technical specifications including all other available international standards).

In line with this context, the members of the Avicenna Alliance from medtech, pharmaceutical, software 
and life science industries, as well as from the in silico medicine academic community and healthcare 
organisations call on the European Commission to:

 •  Reflect the added value that in silico technologies have in healthcare within the revision of existing 
pharmaceutical legislation. This is particularly the case for the production of digital evidence for treatment 
development, especially for paediatric and rare diseases, which cannot be generated by the in vitro or ex vivo 
models, or is very challenging to generate using in vivo (animal and patient) models. 

 •  Introduce a clear regulatory framework for digital evidence for all medical products, including  
both drugs and devices, that takes into account the context of use and model risk to reduce political  
and economic barriers.

 •  Develop a Good Simulation Practice, similar to Good Clinical Practice or Good Manufacturing Practice, as a 
starting point for developing in silico models used in decision-making processes such as regulation. 

 •  Launch funding schemes promoting the adoption of in silico technologies in healthcare through pre-
commercial procurements, public procurements of innovations and early dialogues either with local/national 
health technology assessment agencies or through EU-level joint clinical assessments. 

 •  Promote public trust in in silico technologies by increasing awareness, e.g. increasing public literacy about 
said technologies. 

38: https://ec.europa.eu/health/ehealth/dataspace_en

39: https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

40: https://ec.europa.eu/health/human-use/strategy_en

https://ec.europa.eu/health/ehealth/dataspace_en
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://ec.europa.eu/health/human-use/strategy_en
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Figure 2:  
Synergy between knowledge driven (mechanistic) models and data driven (statistical) models in the definition of electrocardiogram (ECG) 

biomarkers for the management of hypertrophic cardiomyopathy (HCM). Reproduced from Corral-Acero et al. (2020)21, with permission.

Example 1
Hypertrophic cardiomyopathy (HCM) is a disease in which the heart muscle becomes abnormally thick. 
Electrocardiogram (ECG) is one of the simplest and fastest tests to evaluate the heart. Although there are general 
links between changes in the ECG and changes in the heart morphology and sudden cardiac death, the coupling 
between HCM and ECG remains poorly understood with suboptimal patient stratification as a consequence. In 
this example, data-driven modelling (statistical methods, blue part) is used to classify the patients into specific 
subgroups based on the similarities in their ECG signals 41,42,43. 

Subsequently, knowledge-driven modelling was used (red part) starting from the patient’s medical images of the 
heart to link the identified subgroups to abnormalities in underlying biological processes such as problems 
in the ion channels that are important for the production of electrical signals in the heart (leading to specific ECG 
signals). The combination of both data-driven and knowledge-driven approaches allowed to identify personalised 
treatment strategies based on ECG read-outs.

41:  Lyon A, et al., Electrocardiogram phenotypes in hypertrophic cardiomyopathy caused by distinct mechanisms: apico-basal repolarization 
gradients vs. Purkinje-myocardial Coupling abnormalities. Europace 2018;20: III102–III112.

42:  Lyon A, et al., Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk 
markers. Front Physiol 2018;9:213.

43:  Corral-Acero J, et al., The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. 2020 Mar 4:ehaa159. doi: 10.1093/eurheartj/ehaa159.
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Example 2
Musculoskeletal models can be used to explore the mechanical balance of the human body and support efficient 
physical rehabilitation therapies. They can also be used for holistic assessment of patients with multifactorial joint 
disorders, such as osteoarthritis or juvenile rheumatoid arthritis, where mechanical loads play an important role. 
Using gait analysis (motion capture) and specific computational techniques, the forces acting on the joints can 
be calculated. Translating these forces into loads experienced by the tissues of the joint such as the cartilage 
requires computationally intensive (expensive) simulations. That is not an option if these models are to be used in 
clinical evaluations. Thereto, a surrogate model is built. 

First, the knowledge-driven model is simulated for a wide range of motions and material properties. 
Subsequently, the obtained (modelling) data is used by a data-driven technology to link the joint loads to the 
modelled output. The resulting artificial neural network can be solved in real time, allowing the clinician to 
evaluate the loading in the tissues by performing gait analysis44.

44:  Eskinazi I, Fregly BJ. An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics. IEEE Trans Biomed Eng. 2016;63(2):269-
77. doi: 10.1109/TBME.2015.2455510. 

Figure 3:  

The Surrogate Contact Modelling Toolbox (SCMT) composed of several tools or modules. Adapted from Eskinazi & Fregly (2016)23, with permission.
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Figure 4: 
Schematic methodology for using machine learning to combine biophysical simulation stress tests for acute simulation responses with population 
data to predict long-term atrial fibrillation (AF) recurrence. DTMRI: diffusion-tensor magnetic resonance imaging; ERP: effective refractory period; 

PVI: pulmonary vein isolation. Reproduced from Roney et al. (2022)28 with permission.

Example 3
This example demonstrates the use of a machine learning model trained using virtual patient cohorts to 
predict the optimal ablation procedure strategy in patients with atrial fibrillation28. In patients with atrial fibrillation, 
an irregular activation of the top two chambers of the heart, ablation can be used to remove or isolate tissue that 
is sustaining the arrhythmia. 

However, only a single ablation strategy can be delivered to each patient, this means it is not possible to 
determine if the optimal strategy, that treats the arrhythmia but minimises the amount of tissue ablated, was 
delivered in any single patient. The acute outcome of multiple ablation strategies can be delivered in virtual 
patients. By creating a virtual patient cohort and delivering multiple ablation strategies to each patient, it is 
possible to train a machine learning model to predict which ablation strategy will be best for each patient and 
identify the factors that best inform this decision. This creates a platform for training data-driven models when the 
clinical data cannot be collected. 
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About the Avicenna Alliance

The Avicenna Alliance is an association of industry and research organisations who have a commercial or 
research interest in the development of In silico medicine. The Association, established in 2015, has its origins in 
the Virtual Physiological Human Initiative, a European Commission funded scientific domain focused on research 
into computer modelling and simulation. Tasked by the European Commission with developing a “Roadmap for 
In silico medicine”, the Association now seeks to put this roadmap into policy and ensure the development of a 
regulated In silico market. 

This Association bridges the gap between the scientific community, industry and policy makers by advocating for 
policy changes that take into account scientific and market developments. 

About the Virtual Physiological Human institute

The Virtual Physiological Human Institute, in short VPH Institute, is an international non-profit organisation, 
whose mission is to ensure that the Virtual Physiological Human is fully realised, universally adopted, and 
effectively used both in research and clinic. To this end, it organises its activities both on the scientific level and 
the policy-regulatory level, ensuring the entire path from computer screen to the patient is rolled out and all 
stakeholders are involved.
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